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I. INTRODUCTION AND OQOVERVIEW
This report describes research performed by Berkeley
Research Associates under Contract #N00014-81-C-2371

with the Plasma Physics Division, Naval Research Laboratory.
4

LT S s
;lwhe-report covers the period June 1981 to June 1983, during

which time investigations were conducted into several major
topics concerning the behavior of an intense (multi-kilo-
ampere) electron beam in the modified betatron electron
accelerator.- The work described here was performed in sup-

port of and in close association with the staff of the NRL

special focus program, "Advanced Accelerators."
e \

' e
TS~ The modified betatron has been selected by NRL for

experimental evaluation as a high-current electron accelera-
tor. Theoretical support has been directed at identifying
those phenomena which will most directly affect accelerator
performance. To this end, research has been carried out in
the following areas: (1) Transverse linear beam dynamics in
time vg;xing, azimuthally symmetric fields, (2) Effects of
grad B;wi;duced drifts, (3) Orbital resonance effects due to
small field errors, (4) Nonlinear effects, especially those
due to non constant betatron field index, (5) Collective
effects, especially the negative mass instability, and (6)
Strongly focused systems. These studies were undertaken

f

with a view toward assisting in the choice of parameters for

an experimental device to be constructed at NRL. The results
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of this work have served as intended, to focus the experi-

mental design effort in that region of parameter space most

likely to produce a beam of the required characteristics.
This report is divided into eight sections. Follow-

ing the introduction, in Section II, we describe, in outline,

the assumptions, analysis, and conclusions of our study of

the dynamics of an intense, azimuthally symmetric beam. The
beam is studied in the paraxial approximation wherein all
fields, both self and externally applied, are taken to vary
linearly with displacement from the nominal design orbit
(assumed to be planar). This approximation allows us, by
performing an average over an ensemble of initial conditions,
to obtain equations for the motion of the keam centroid
about the center of the vacuum chamber, as well as for the
motion of individual particles about the center of the beam.
A WKB solution to these equations allows several conclusions
to be drawn about the stability of the betatron oscillations
and the adiabatic behavior of these oscillations, both during
acceleration and the subsequent removal of the toroidal
magnetic field.

Section III outlines our analysis of the effect of
the radial gradient of the toroidal field on beam motion--a
nonlinear effect. We find grad-B drift to be canceled by
the weak focusing forces, the net effect being a slight shift

in the equilibrium beam position, unless it happens that the
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focusing forces are just canceled by wall image forces.
The avoidance of this transition point, where betatron focus-
ing and wall image defocusing forces balance, leads to an

important limit on beam current which is independent of the

Y PRSP

e toroidal field. This limit is given in Section III.

2
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Sections IV and V deal with resonance effects. In

‘l
. l e e e

Section IV we describe the effect on the beam centroid of
small azimuthal variations in the applied fields. We obtain
an important bound on the allowable azimuthal field perturba-
tion in order that certain so-called integer resonances will
not disrupt the beam. The approach again employs the paraxial
fd equations of motion and the averaging technique developed in
c our study of the dynamics of the symmetric beam. The analysis
N of Section V presents certain results on nonlinear resonance
effects caused by the transverse variation of the field index
n.
I Next, in Section VI, some results on collective insta-
- bilities are given, building on work by Sprangle and Vom-
voridis. A novel result--a double valuedness in the current
i&f vs energy spread stability curve-~is predicted as a result
;._ of competition between growth and stabilization mechanisms.
A strongly stabilizing effect of the toroidal field is
evident.
'ELV In the final technical section, Section VII, a dis-
cussion is given of the sensitivity of a weakly-focused system

s to average beam momentum-vertical field mismatch.
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Consideration of this problem has led to a proposal for the

use of a type of strong-focusing coil arrangement in which
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- orbits have been studied in the linear approximation. -
In all technical sections, calculations are only sum-

marized or outlined. Details are relegated to Appendices.

.. R -
M L
. e

i ) ~441 :

Ad

Additionally, computer codes developed in the course of this

"

work are documented in Appendices.
=l A final section, Section VIII, briefly summarizes the

work, states our conclusions, and suggests directions for ~]

further study.
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I1I. TRANSVERSE BEAM DYNAMICS IN THE MODIFIED BETATRON Hj

The modified betatron electron accelerator field con- fﬁ
figuration consists of a conventional weak focusing betatron ;
field upon which is superimposed a toroidal magnetic field. ?;

1,2

It has been shown that this toroidal field greatly in-

creases the amount of charge that can be confined in a device ;;
of given size. Acceleration is accomplished as in a conven- :
tional betatron, that is, by changing the flux through the
electrons' orbit.

The orbit of any particular electron depends, however,
not only on the external fields as in a conventional (low v/Yy)
device, but also on the non negligible fields produced by
all other particles in the system. These fields are found
by solving Maxwell's equations with the correct sources.

Since we do not attempt here to calculate the particle dynam-
ics self-consistently, we are forced to make some approxima-
tion for these sources which we do by taking the number and
current densities as constants across the beam cross-section.
This approximation appears to agree fairly well with the
number and current distributions found in numerical simula-
tions and our final results are quite insensitive to the
exact distributions which affect only a certain coefficient
in the argument of a logarithm. Maxwell's equations are
solved through first order in the inverse aspect ratio of

the torus. It is very important to include these "toroidal
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corrections” to the self-fields for intense beams (v/y2.02).

They affect both the value of the required vertical field

needed to hold the beam at its equilibrium radius as well

as the values of the betatron frequencies. These corrections
1,2

were not included in previous treatments .

The resulting fields, when substituted in the equa-

tions of motion, yield a paraxial equation description of
the beam. When solved, the equations illustrate several

o interesting phenomena involving the beam. First, two basic
modes of oscillation exist, a "fast" mode corresponding
roughly to cyclotron motion about the toroidal field, and a
"slow" mode corresponding to an F x B drift motion where
here the force ¥ is due to a combination of the ordinary
weak focusing fields, image currents and charges in the wall,
- and hoop stresses on the ring. It may be arranged, by judi-
cious choice of parameters, that the fast mode will always
be stable, throught the injection-acceleration-ejection cycle.
The slow (drift) mode, however, is more complicated. Under
certain conditions the net radial focusing force (ﬁ) may
vanish, leading to a transition to unstable behavior fol-
lowed by a subsequent reversal in sign of the drift motion
that is described in detail in Appendix A. This transition
may be shown to occur at a boundary in parameter space on

s one side of which the toroidal field is essential for beam

stability, while on the other side the toroidal field is

P .
.....................




superfluous for stability. This "instability gap" may not

be so serious for single particle motion since it may be
shown that a small expansion of the beam restabilizes the
motion. For motion of the beam centroid, however, it is
much more serious. In fact, we have concluded, on the basis
both of this work and other numerical studies, that the beam
must be launched and accelerated so as to avoid passage
through the instability gap for beam center motion3. For-
tunately, this does appear possible to do, though it does
place a limit on the current that may be accelerated in a

device of given aspect ratio. That limit is given by

n_ = 2_"3_(ro/a) 2<1/2 (II-1)
Y

where r, and a are the major and minor radii of the toroidal
chamber, Iy is the beam radius, and ng is the so-called self-
field index. It is interesting to note that this limit is
independent of the value of the toroidal field and may in
fact represent a more stringent requirement than the basic
stability criterion for the fast mode, which can always in
principle be satisfied by choosing a large enough toroidal
field. For example, according to the above constraint, a

10 kA beam must be injected such that its in situ energy

(i.e., that energy retai =2d as ' .ietic energy by the beam

after the beam has given ur some fraction of its energy to
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the fields within the chamber, after leaving the diode)

L
P -

corresponds to a value of Yy in excess of 6.2 for a chamber
with ro/a = 10. (Toroidal corrections modify this number

somewhat; these are described in Appendix A.)

coaa ]

This constraint (II-1) also affects the workability of

certain injection schemes which are based on drifting the

. .
P

beam away from the injector structure during one major
transit of the machine. Since the drift frequency is pro-
portional to the quantity (1/2 - rﬁns/az) (B,/By), one does
not want to work too close to transition since a minimum
value of B is required to stabilize the fast mode and one

requires that the drift frequency wp be at least as large as

r

wg 2—Al—’ (I1-2)

3=

where A is the distance from the injector port to the beam
equilibrium orbit and T is the orbital (major) period. (Con-
straint (II-2) comes from requiring the beam center to drift
two beam radii during one transit around the machine--a mini-
mal requirement for achieving low levels of loss due to scat-
tering by the injector structure.) Both constraints (II-1)
and (II-2) favor a large value for vy at injection time.

The instability gaps for particle and whole beam motion

‘&f have no analog in a conventional betatron. They occur, rough-
E{ ly speaking, when self-fields become comparable to applied

F’k fields, which is never the case in a conventional, low current




device. The modified betatron, if it operates as projected,
will be the first cyclic particle accelerator in which beam
self-fields play a significant role in the particle dynamics.

Another phenomenon occuring in the modified betatron
does have an analog in a conventional betatron. This is the
adiabatic change in amplitude of the betatron oscillations,
as external parameters (Bz, Be, field index, flux, ...) are
slowly changed4. The solution to the linearized equations of
motion allows us to obtain explicit expressions for the ratio
of the beam radius at the end of the acceleration to that at
the beginning. The result is that the beam undergoes a
slight compression, as in a conventional accelerator. The
beam remains well-behaved during all slow changes in param-
eters as long as one avoids the instability gap, the bound-
aries of which appear mathematically as two turning points in
the WKB solution.

Unlike the case in a conventional betatron, however,
this adiabatic decrease in the betatron oscillation ampli-
tude does not help very much in the basic injection problem;
that is, ensuring that the beam misses the injector after one
turn. In a conventional betatron one has at least a few
turns to accelerate the beam before a particle returns to the
vicinity of the injector, since the betatron wavelength is
somewhat greater than the machine circumference. With a

strong toroidal field in place, however, particles in the
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modified betatron tend to follow the toroidal field lines
and one must depend on the slow drift to carry the beam away
from the injection port in only one turn. The beam, if
successful in missing the injector on the first turn, may

be subsequently trapped by changing external parameters.

In the course of these investigations on transverse
beam dynamics in azimuthally symmetric fields, two computer
programs were developed to assist in our understanding of
the electron orbits. First, a code LBE (for "Linearized
Betatron Equations") was written which integrates the linear-
ized equations of motion for either an individual particle
or the beam centroid in arbitrarily time-varying external
fields, Ee(t), Bz(t), Be(t). The code includes toroidal
corrections to the self-fields, assuming a given fixed beam
radius. It was used to generate Figs. 4-6 of Appendix A.

The code itself is documented by I/O description in Appendix
AA, where a listing is also given.

A second code, a single-particle integrator, was also
written for the purpose of studying nonlinear dynamics at
high energies, where self-field effects are less important.
This program, named BTRAK, was eventually modified to include
azimuthally varying fields for our study of resonance effects.
(See Sections 1V, V, and VII.) Its documentation, including

listing, appears in Appendix BB,

10
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3. There is another reason this beam motion instability gap

should be avoided. "Below" the gap, where the toroidal
field is essential for the stability of whole beam motion,
the so-called drag instability, due to finite wall resis-
tivity, becomes operative. See P. Sprangle and C.A.
Kapetanakos, NRL Memorandum Report 4950 (1983).

ﬁ: 4. D. Kerst, Handbuch der Physik, XLIV, 13 (1959).
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-ﬂ I1I. GRAD—Be DRIFT IN THE MODIFIED BETATRON —
. 4
The effect of nonlinearities in the self- and applied -
jf fields will modify the results of Section II; in general,
however, these corrections are expected to be small, and in
any event are hard to calculate. If the tornidal field Be

is strong, however, an important nonlinearity to consider

is the radial gradient in Be.
In general, an electron streaming along a field line
executing small gyro orbits will experience a drift in the
direction VB x B which, in the modified betatron, is vertical.
In the betatron however, the situation is complicated by the
- presence of the vertical field gradient which gives a verti-
cal restoring force; motion in the vertical field clearly
cannot be treated in the drift approximation, since the
orbit size is of the same order as the scale length of sz'
To find the true behavior in the combination of vertical and
toroidal fields, we must solve the betatron equations of
motion, including the 3B0/3r term. Such a calculation has
been carried out; the details appear in Appendix B, part V.
The conclusion reached in the Appendix is that, except
for the exceptional case in which the net radial focusing
force (due to the betatron field and image fields) vanishes,
the 3By/3r term affects the motion only slightly, giving a

radial shift in the position of the equilibrium orbit and a

resulting slight change in the betatron frequencies (which

12
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remain real). The radial shift in equilibrium may be inter-
preted as the result of a balance between the outward "dia-
magnetic” force, which tends to expel the beam from the

high field region and the inward radial restoring force.

;f When the radial restoring force vanishes, the grad-B drift
is free to operate. Since the resulting drift is extremely
fast, the only reasonable experimental alternative is to
avoid the vanishing point for the restoring force. The con-
dition for this has been given in Section II, Eq. (II-1),
which provides a bound on the accelerator current which is

independent of the toroidal field.

13
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IV. INTEGER RESONANCES IN THE MODIFIED BETATRON

-#;- Throughout the analysis of the previous sections it

. was assumed that all applied fields were perfectly azimuth-

ally symmetric. 1In practice, of course, any actual accel-

erator will have slight field imperfections in the toroidal

direction, which will be encountered periodically by each

;:f electron. In the general case these small periodically

133 applied perturbations to the electron's orbit cause only a

2 small response. However, if it happens that the frequency

of the betatron oscillations matches the circulation fre-

quency (or an integer multiple thereof) a constant phase

e relationship is maintained over many circulation times be-
tween the particle motion and a Fourier component of the

- field imperfection. The resulting "integer resonance" can

iﬁﬂ cause an enormous buildup of betatron oscillations and loss

3 of beam confinement.
;ﬁg In a conventional betatron integer resonances do not
occur (neglecting the marginally stable cases n = 0 or 1)

because the betatron frequencies, both radial and axial, are

-4

N necessarily always lower than the particle circulation fre-~

mppe.
W
. ..'

7’
I

quency. In the modified betatron, however, the fast mode

¥4

can be resonant. For motion of the beam center the gf-th

.'. l».}.

resonance occurs when the ratio of the toroidal to vertical

fields is

4 —1l,o2_1 -
e Be/B = Tf(z 2 + n )l (IV 1)

14
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where & is the Fourier harmonic number of the field error. ;j
"

Since both Be and B, will in general be changing in time =
o

during an experiment, some of these resonances may have to ;@
be passed through. This will necessarily be the case if *{
- 4

one anticipates rémoving the toroidal field prior to beam fﬁ
ejection. The question then arises as to how fast the £-th :i

resonance must be passed through in order to avoid beam
disruption.

To answer this question the equations of motion in
the presence of a field error were formulated and solved,
assuming that the fields varied slowly over a circulation
time. The result, derived in Appendixbc, gives a bound on
the magnitude of the field error that may be tolerated.

The bound, expressed in terms of the acceleration rate (?),
is rather restrictive, in a practical example that is worked
out in the Appendix, leading us to speculate on ways that the
resonant effect might be minimized.

One possibility which immediately suggests itself is
the use of short acceleration times, thereby limiting the
time during which the resonance effect may operate. Very
short times may be needed, however, since the required accel-
eration time for a given final oscillation amplitude scales
as the (field error)—z. (See Appendix C, Eq. [14].)

A second possibility for stabilization investigated

in the Appendix is thermal spread. Though thermal spread

) 1
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in the beam introduces a spread in resonant frequencies and —
subsequent reduction of the response of the beam center

motion when passing through resonance, individual particle
motion may still be such that an unacceptably large beam :i

expansion occurs.

Yet another possibility, which may be practical for
certain devices, involves maintaining the ratio Bz/Be con-
stant throughout the acceleration. This technique will keep
the tunes constant (save for the tune shift due to space
charge, which is small for large Be) during the experiment.
If the application involves use of the beam in situ, then
the presence of a strong toroidal field within the device
at the end of the acceleration should not be a problem. It
would probably complicate an ejection scheme, however.

A final possibility that was investigated for sta-
bilization is the frequency shifting effect of nonlineari-
ties. Specifically, both the toroidal field and the betatron
field index will generally vary with radial position. Since
the betatron frequencies depend on the values of these quan-
tities, it is possible that the frequencies will be shifted
sufficiently by a small (tolerable) radial displacement so
as to detune the resonance. A rather strong radial gradient
in n may be required to produce the desired effect, however.
Results of an investigation into this question are presented

in the next section.
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In order to be able to predict when certain resonances

will be crossed for a given time history of vertical and
toroidal fields, a computer program named TUNES was written.
This program searches for a specified set of resonances of
the form

gt Vv, =p (1v-2)

where Ve and vy are the numbers of betatron wavelengths of
o the fast and slow oscillation modes within the machine cir-
cumference, and ne, ns, and p are integers. The search is
restricted to [ng| + |ns|53 and p<p_ . where p__  is speci-
- fied by the user. Output includes the resonance label
3’ (nf, ng, p) . the time of crossing, and the values of various
parameters at crossing. TUNES is documented in Appendix CC.

Its use may be helpful in identifying experimentally observed

- resonance effects.

17
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V. EFFECT OF TRANSVERSELY VARYING FIELD INDEX —
ON SINGLE PARTICLE DYNAMICS 3

As discussed in the last section, one possibility con- -

A sidered for controlling resonant response is the intentional

introduction of strong nonlinearities (large values of rdn/dr »;y

where n is the betatron field index) which would result in

an amplitude-dependent betatron frequency. If this effect
were sufficiently strong, the resonant response of a particle
could be limited to small values if its finite amplitude
oscillations lead to a detuning of the resonance. We have
examined the effect of quadratic nonlinearities, limiting
ourselves to single-particle motion for simplicity. Though
this does not allow us to study the general case (since
cubic terms also contribute to frequency shifts), there is
o a special circumstance in which the contribution of the quad-
ratic terms dominate. This occurs when a coupling resonance
(defined below) ccincides with an integer resonance. In
this special circumstance, certain progress may be made
analytically in studying the effect of resonance detuning.
Both a coupling resonance by itself and this "coincidence
resoaance" have been examined. Details are given in Appendix
& D. Here we describe the results of this investigation.
The equations of motion of a particle in azimuthally

"o symmetric fields are

n_nz)yz + %(x'z—y'z) (V-1a)

n
x" + (l-n)x = by' + (2n—1-?%)x2 - (—




y" + ny = -bx' - (2n-n,)xy + x'y', (V-1b)

correct to second order where x = (r—ro)/ro, r, is the major

« ST
. N
PP AP AT SR GP

radius, b = Beo/Bz n is the linear field index, n

o'’ 2

is the :ﬁ
second order field index, and a prime indicates 3/96. These :
equations are solved perturbatively to second order in Appen-
dix D. To linear order one obtains the usual betatron oscil- ;ﬂ

lations with frequencies (Appendix D, Eq. [11].):

(v-2)

v _ b2+1% [ (b?+1) 2-4n(1-n)] %|%
f,S 2

where the subscripts £ and s refer to the fast (+) and slow

(-) modes respectively. These single-particle oscillations

are always stable if n(l1-n)>0.

By inserting the linear solutions into the equations
of motion, we find that the second order correction remains
small unless it happens that the following resonance condi-
tion is satisfied:

vf = 2vs. (V-3)

This condition turns out to be a generalization of the so-
called Walkinshaw resonance condition occuring for n=10.2 or
0.8 in conventional accelerators at which energy is exchanged

between radial and vertical oscillation modes. This phenom-

enon has been observed in early cyclotron experiments1 where,
due to small vertical aperture size, it has led to loss of

the beam. In the modified betatron the resonance is shown ‘*

19 -1
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in Appendix D to lead to energy exchange between fast and
slow modes, with no noticeable growth in beam size under
typical experimental conditions. Thus the resonance (V-3)

is fairly inconsequential in the modified betatron.

This picture changes somewhat when departures from

S

azimuthal symmetry are taken into account. It turns out
that when n=% the generalized Walkinshaw resonance coin-

cides with both ordinary integer (%2=1) and half-integer

Wl P ¥ A'.l_‘-. | N

orbital resonances. By including field error terms we may

derive equations governing the evolution of the mode ampli-
tudes for this "triple coincidence" resonance and use their
solution to study the effect of frequency shifts cn resonance
detuning in this special case. This program is described
in detail and carried through in Appendix D where particle
orbits under resonance conditions are illustrated and dis-
cussed. The basic result from this analysis is that even
fairly strong gradients in n (i.e., large values of n,) do
not adequately control the resonant response of a single
particle, that is, the frequency shifting effect is too
small to be helpful in the case we have studied.

Our conclusion from this and the preceding section

seems clear: It appears to be important to avoid machine

operation near low order integer resonances, the condition

for which being (IV-1).
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Vi. BEAM INSTABILITIES IN THE MODIFIED BETATRON

|

The question of what limits the current a particu-

oo
R
PULNAGN

Ly

lar accelerator can carry in a stable manner is a compli-

.
¢
PO

cated one. In the case of the modified betatron, the first

A'AA.L[' !

analyses (Section II, Refs. 1 and 2) suggested, based on

examination of individual particle betatron oscillations in

the self-fields of the beam, that particle motion could
be stable for large currents if the toroidal field were
made sufficiently strong. Later work (Section II, Ref. 3
and Appendix B), which considered motion of the beam centroid,
led to the discovery that the total beam current must satisfy
the constraint given by (II-1l), which is independent of the
strength of the toroidal field. These analyses, however,
treated the beam as smooth and azimuthally symmetric. It is
known that under certain conditions small azimuthally varying
density perturbations can grow exponentially in time leading
to either bunched or kinked beams. Such longitudinal and
transverse beam instabilities in general become more destruc-
tive (faster growing) the higher the current and so it be-
comes important to consider their current limiting effect in
the modified betatron.

A dispersion relation for longitudinal and transverse
modes for a beam in the modified betatron has been derived
by Sprangle and Vomvoridisl, where a stability condition is

also given. Building on this work, Sprangle and Chernin2

"."." 22
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(Appendix E) have considered a slightly more general case,
taking into account short wavelength contributions to the
wave impedances and the stabilizing effect of finite ampli-
tude betatron oscillations. In Appendix E it is shown that
the presence of the toroidal field greatly enhances beam
stability to both longitudinal and transverse modes, thereby
greatly increasing the current limit over that of a conven-
tional betatron; this stabilizing effect was noticed in
Reference [1] where several numerical examples are worked
out. The growth rate of the negative mass/kink mode, for
example, scales as Bgl, a fact attributed to the inhibiting
effect the toroidal field has on transverse motion. Stabili-
zation of both longitudinal and transverse modes, for toroi-
dal mode number 2#0, is due to energy spread, or, more pre-
cisely, angular frequency spread in the beam; if two parti-
cles, initially traveling together, separate by a wavelength
or more in a (cold beam) growth time, clearly the coherence
of the instability will be lost and growth will stop. If
we call the spread in angular frequency in the steady state
beam AQ and the growth rate in the absence of frequency spread,
I', then we expect, on the above grounds, the stability condi-
tion to be given by

r < 2]aq| (VI-1)
to within a numerical factor. 1In fact, it may be rigorously

shown1 that for a beam with a Lorentzian distribution of

23

LY WL SL W R S

AP L.' PN

PO S e x. ot oAl

..L.Ll P

l'. PPRTY Y

PR
[P




et hendeaa e Sate amsem Aia‘elal

canonical angular momentum (VI-1l), is the exact stability
condition.

The frequency spread A of the equilibrium beam is
related to the energy spread via the single particle momen- ;]
tum compaction factor; the relation is

laQ| = %wclcx[ (AE/E) (VI-2)

where o = (%-—n ) =Y W, is the cyclotron frequency,

and AE/E is the full width of the energy distribution. We
note the importance here of including self-field effects,
represented by the self-field index ng, in the definition of «a.
It is the appearance of ng in a, which leads to a novel
effect, predicted in Appendix E on the basis of (VI-1,2):

For low currents (ns<<%), o is effectively independent of
current and so, since the cold beam growth rate increases
with current, the beam energy spread required for stability
also increases. As one continues to increase the current,
however, o begins to increase significantly, eventually
overcoming the increasing growth rate beyond which point
increasing the current still further results in stabilization!

In fact, for nsz%, virtually no energy spread is required.

There results therefore, from this competition between growth

and stabilization mechanisms, a double valuedness in the
. current vs energy spread stability curve, illustrated and
discussed in Appendix E. The prediction of a second stable

operating regime for accelerators is the main new result of

24
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this investigation. Our conclusion is that the toroidal
field makes possible operation at high currents by (1) re-
ducing cold beam growth rates and, (2) giving access to
stable, nigh-current sectors of the current vs energy spread

diagram.
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VII. STRONG-FOCUSING SYSTEMS

Conventional betatrons are weak-focusing accelerators,
meaning that the wavelengths of the betatron oscillations are
of the order of the machine circumference. A second conse-
quence of weak-focusing is that the momentum compaction fac-
tor, defined as the fractional radial shift in a mismatched

beam divided by its fractional momentum mismatch:

a = (Ar/x )/ (Ap/p,) (VII-1)

is typically of order unity. For a conventional betatron it
may be shown, for instance, that a = (l—n)-l. As a result,
for weak-focusing systems one can typically tolerate only
a few percent momentum mismatch before a beam is lost to the
chamber wells. Strong-focusing systems, on the other hand,
have small values for the momentum compaction factor and
betatron wavelengths are much smaller than the machine cir-
cumference. A strong-focusing accelerator, consequently, can
tolerate a relatively large momentum mismatch. It was the
discovery over 30 years agc of the strong-focusing principle
which has allowed the construction of the large radius
research accelerators in use today.

A modified betatron is a strong-focusing system with
respect to particle orbits about the center of the beam,
but is a weak-focusing system with respect to motion of the

beam centroid about the center of the vacuum chamber. As a

27
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result, it is necessary that the average beam energy be -

matched to the vertical field to within a few percent. This

[
P,

may be done with careful injector and magnetic field design

N TR

but design tolerances tend to be tight.
It was the realization of this tolerance problem _
)
N
which led to the consideration of ways to implement strong-

focusing in a modified betatron in a way consistent with its

design. As a result of a study, it was proposed to add so-

S, s ‘
R . '
'A_‘IA_L‘ML

called £=2 stellarator windings to the betatron in order to

‘lc T
LA
e,

oy
dhakatith

obtain the beneficial effects of strong-focusing on the beam
centroid motion. This extra winding is basically a continu-
ously twisted quadrupole, the limiting case of conventional,

closely-spaced discrete quadrupoles which we used in alter-

N [N -‘r.-' .,
e T
A“A oy e

nating gradient focusing. Beam dynamics in the resulting
configuration, consisting of a conventional weak-focusing
betatron field, a strong-toroidal field, and an %=2 stellara- '¥
tor winding have been analyzed in the linear approximation

including the effects of self~fields. The results are given
and discussed in Appendix F where expressions for the betatron f‘
frequencies and momentum compaction factor are derived. We

find the results to be encouraging in the sense that the addi-
tion of the stellarator winding allows large beam currents _4
to be confined and a large beam momentum mismatch (~50% is

not unreasonable) to be tolerated. .
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The addition of the stellarator winding is not with-
out some drawbacks. As with any strong-focusing system, the
effects of orbital resonances must be carefully considered.
As discussed above in Section 1V, resonances are present and

may be a problem already in the modified betatron without the

stellarator field. Addition of the 2=2 winding introduces
new sets of resonances which must be examined. This work is
presently in progress and should lead to important guides for
design.

From a practical point of view, the stellarator winding
introduces some other possible complications. Injection may
become difficult due to the presence of the separatrix,
though one possible way to avoid this problem is to introduce
straight sections along which to inject. Construction, sup-
port, and power supply questions for the stellarator winding
also need to be examined. Some preliminary study of the
injection and coil design questions in £fact have led to con-
sideration of an =0 system which may be preferable from the
point of view of some of these problems. The £=0 stellatron,

or "bumpy torus accelerator" may have some practical advan-

tages over the £=2 system. It is described and analyzed
%?; in Appendix G.

5;u Despite possible drawbacks, we conclude that strong-
focusing systems show significant promise as high-current

E”‘ accelerators. Basic issues in orbital stability and
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momentum bandwidth have been addressed. Resonance effects,

beam instabilities, injection, and detailed coil design

issues remain to be studied further.
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VIII. CONCLUSIONS —

The analysis of beam behavior in the modified beta-
tron carried out by Berkeley Research Associates over the
past two years has led to a detailed understanding of how

such an accelerator should operate, its advantages compared

to conventional betatrons, and its limitations. Among the
advantages must be listed its ability to hold large currents
stably during acceleration. We have found that the toroidal
field greatly enhances the equilibrium current that may be
carried and also enhances the stability of the beam to the
longitudinal (negative mass) and transverse collective beam
instabilities which may affect the beam. We have found non-
linear effects, including grad-B drifts and effects of trans-
versely varying field index to be negligible as long as the
- net radial beam-focusing forces remain finite (II-1l). Orbi-
. tal resonances may be a problem in the device unless thay are
passed through very rapidly or avoided altogether; avoidance
-, of the low f-number resonances, at least, is probably essential
- and possible to do in some acceleration scenarios which have
been discussed.

Among the limiting features of the modified betatron
must be mentioned the sensitivity of the position of the beam
equilibrium orbit with respect to its momentum mismatch.

This feature, a consequence of the weak-focusing betatron

fields, may be overcome by the addition of stellarator fields,
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the effect of which is to allow beams with a large momentum
mismatch to be confined.

Studies of beam dynamics under this contract have
contributed in an important way to the selection of parameters
for the high-current injection experiment now being constructed.
This experiment will challenge and refine our understanding of
the properties of high-current electron beams in toroidal
devices. Once completed, the experiment should lead to an
operational high-current accelerator.

Theoretical issues which remain to be addressed include:
verification of the double-valuedness in the stability curve
discussed in Section VI, in a simple but rigorous (Vlasov-
Maxwell) model; analysis of the expected radiation spectrum
(for diagnostic purposes or for radiation source development) ;
and investigation of resonance effects, injection methods,
and coil design in the stellatron. Work in these areas is
presently being pursued in association with NRL personnel.
Combined with the efforts of the past two years, this con-
tinuing research will assist in a significant way in meeting
the goals of the NRL Special Focus Program on advanced high-

current electron accelerators.
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APPENDIX A

Beam Dynamics in the Modified Betatron
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1. INTRODUCTION

1t has been suggested'2 that the current carrying
capacity of a conventional betatron accelerator
might be improved dramatically by the addition
of a strong toroidal magnetic field. Such a field
acts to confine the beam during injection and
early stages of ncceleration when v, the usual
relativistic factor, is small and space charge ef-
fects which tend to expand the beam are large.
After acceleration is complete, v is large, space
charge effects are small, and the usual weak fo-
cussing betatron fields are sufficient to confine
the beam; the toroidal field may then be removed
to facilitate beam ejection. In gencral both ver-
tical and toroidal magnetic ficlds may be chang-
ing simultancously during beam injection and
ejection. It is the purpose of this paper to examine
the behavior of the beam in such time-varying
fields.

Some carly, though unsuccessful experiments
using this modificd betatron ficld configuration
were carried out in England after World War 11,3
subsequent analysis* attributed the poor results
to the injection method used at the time whereby
significant numbers of electrons intersected the
back of the injector structure after a few trips

* Supported by the Office of Naval Rescarch
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f:-__'_ TRANSVERSE BEAM DYNAMICS IN THE MODIFIED BETATRON*

D. CHERNIN
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The linearized equations governing the motion of the center of a beam about its equilibrium position in a modified
betatron, as well as equations governing the motion of an individual particle about the beam center, are presented
and solved. Self field effects, including toroidal hoop stresses and wall image forces, are included in the analysis.
All fields, both self and applied, are assumed to be azimuthally symmetric but are allowed to have arbitrary time
dependences. The solutions to the equations of motion are analyzed for stability and conditions for stability are
obtained. Further study of the solutions illustrates two phenomena of experimental interest: (1) the unavoidable
traversal of a finite *‘instability gap’ in parameter space during acceleration and (2) the adiabatic increase in the
amplitude of the betatron oscillations during removal of the toroidal magnetic field, prior to beam ejection. By
careful design, the effects of these phenomena can be reduced to insignificant levels in an actual accelerator.

around the device. Recently other, more prom-
ising injection schemes have been proposed® to
take full advantage of the focusing action of the
toroidal ficld. The resulting prospect of con-
structing a very high current (~ 1-10 KA) be-
tatron has prompted the analysis prescnted here.

We shall derive and solve equations governing
the motion of the center of an electron beam con-
fined in a modified betatron as well as equations
governing the motion of an individual particle
within the beam. Whole beam and single particle
stability criteria will be presented; the stabilizing
effect of the toroidal field for both beam and sin-
gle particle motions, noted earlier,"? will be ap-
parent.

When the fields are allowed to vary in time two
interesting phenomena occur. The first phenom-
enon, which occurs during acceleration, has no
analogue in.a conventional betatron: As the beam
accelerates (y increases) the betatron makes a
transition from a region in parameter space in
which the toroidal field is essential to stability
(modificd betatron regime) 1o a region in which
the toroidal field is superfluous to stability (con-
ventional betetron regime). It turns out that, ex-
cept under extraordinary circumstances, the sys-
tem must pass through an “‘instability gap™—a
rcgion of parameter space, separating the modi-
ficd and conventional betatron regimes, in which

33.1

itttz

e
Aendanlat gl e

o TS

gy

L& s 8 4

PPN & 4




-

v

0

T T,
.-.‘ i

v Y,

T R e e

e Aten: Siacy an Shets MMeaCUR Sy ML

fa iy o geese Jven ave Jeie b Jfen "Rt e e e 3

D. CHERNIN AND P. SPRANGLE

single particle motion is unstable, though beam
center motion may not be, irrespective of the
magnitude of the toroidal magnetic ficld. How-
ever, though the size of the instability gap is in-
dependent of the toroidal field, the instability
growth rate within the gap is inversely propor-
tional to this field. We find below that by judi-
cious magnet design and sufficiently rapid ac-
celeration, this gap may be successfully traversed
with minimal beam disturbance.

The second phenomenon occuring in time
varying fields does have an analogue in a con-
ventional betatron; this is the adiabatic change
in the amplitude of the betatron oscillations.®
Since the frequency of these oscillations depends

‘now on both the vertical and toroidal fields a slow

change in either is expected to alter the amplitude
of the betatron oscillations. During acceleration
we find, as in a conventional accelerator,® that
the oscillation amplitude decreases as the vertical
field increases. If one now considers removal of
the toroidal ficld prior to beam ejection, we find
that, as long as the toroidal magnetic field is much
larger than the vertical ficld, the beam motion
will describe orbits of increasing amplitude as the
toroidal field is decreased. Once the toroidal field
becomes comparable to the vertical field, how-
ever, the motion becomes more complicated and
the betatron oscillations no longer continue to
increase in amplitude. We find that, by careful
choice of field strengths, the ratio of the betatron
oscillation amplitude before acceleration to the
amplitude of oscillation following complcte re-
moval of the toroidal field can be adjusted to be
near one.

In the following analysis we assume *‘perfect,”’
i.e., azimuthally symmetric fields. By neglecting
the possibility of azimuthal variation in the self
fields (due to beam bunching or kinking) we omit
here consideration of a variety of beam instabil-
ities that may occur;” by neglecting similar azi-
muthal variation in the applied fields (*‘field er-
rors’") we neglect the effects of orbital resonances.
These will be addressed in a separate report.®

II. EQUILIBRIUM RADIAL FORCE
BALANCE

The geometry of the modified betatron is shown
in Fig. 1. The field configuration is that of an
ordinary betatron with the addition of a toroidal
magnetic ficld, Bgo, here taken to be positive and
constant across the minor cross section of the
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Cutaway view of modified betatron geometry

FIGURE 1

torus. We consider an electron beam of circular
cross section, as shown in Fig. 2, with center
located at (r., z.) = (ro + Ar, Az) where rgyis the
equilibrium radius for the center of the beam at
which the electric, magnetic, and centrifugal
forces on a particle at the center of the beam are
in balance. We shall take r, to be the major radius
of the accelerator chamber. In the abscnce of self
field effects radial force balance requires the
electron circulation frequency at r = rg, z = 0
to be given by

e0 = nZO (l)

= eB,o/myoc (no self field effects),

PARTICULAR
ELECTRON
POSITION

MINOR CROSS SECTION
OF TORUS

FIGURE 2 Coordinates of beam and particle in modified
betatron. Center of beam is at (r, 2) = (ro + Ar, Az). Electron
isat (r, 2) = (ro + Ar + br, &z + 82).
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MODIFIED-BETATRON BEAM DYNAMICS

where B,, is the value of the applied vertical be-
tatron field at the location of the orbit, vy, is the
usual relativistic factor, e(>0) is the magnitude
of the electron charge, m is the electron rest
mass, and c is the spced of light.

Self field effects will modify Eq. (1) however.?
A nonneutral current ring produces both a zero
order vertical magnetic ficld and a radial electric
field. In general, for a reference particle at r =
re, 2 = 0, radial force balance requires

. - | .
—YoroBo® = = [Er“” + —r06pB,® ] ()
m c

where E'” and B,? are the zero order fields at
r = ro, z = 0. From Appendix A, Egs. (A-25c,
26¢, 26d)

2

B = B,o — mnoePo Iy 3)
o
2
E® = —qnoe 2 Ie )
ro

where the notation is defined in Appendix A.

The terms proportional to I in Eq. (3) and I
in Eq. (4) are toroidal corrections to the self fields
of a cylindrical beam. They represent *‘hoop
stresses’'—self forces on a nonneutral ring of
current which act to expand the ring. Since we
do not attempt here to construct a consistent
equilibrium for the beam'®-!? we leave Ig and I
arbitrary in the analysis below since their precise
values depend upon the particular distributions
of charge and current in the beam. Still, one ex-
pects the leading order logarithms in the cxpres-
sions for Iy and I, Eqs. (A-27, 28) to be correct.

Using now the zero order fields, Egs. (3, 4),
in Eq. (2) we may write the condition for radial
force balance as

2
[] +l’g]002—nzoéo+‘1£‘2h§=0 (5)
Yo Yo ro

where

1 82 1 w;,zrbz
v/)'o = :;; ['nn,zno ;c"—z] = Z‘—zz—— 6)

and where w, is the beam plasma frequency,
(4wnoe?/myy)'. Here and below €1 retains the
definition assigned to it in Eq. (1).

Equation (5) is a quadratic equation for the
circulation frequency, 6,. The solution which

33.3

approaches 1,4 as v/yo — 0 is, to first order in

vio
éoznzo[] ——v"‘('l_zlb"‘l"lll)]v (7)
Yo \&

where a = ) ore/c. Self ficld effects, represented
by the v/y, term, are scen to reduce the single
particle circulation frequency beclow that ex-
pected for.zero density; the correction term can
be significant (20-30%) in presently contem-
plated devices. The general result, Eq. (7), will
be needed below in the derivation of the first
order equations of motion.

H1. FIRST ORDER EQUATIONS OF
MOTION

In this section the equations governing the mo-
tion of a bcam and motion of an electron within
the beam are obtained and discussed. We shall
consider in detail only motion transverse to the
toroidal magnetic field, assuming that all fields,
both self and applied, are independent of 6.

The equations of motion for a particle in the
fields of (A-25, 26) to first order in the displace-
ments from the reference orbit (ry, 0), are derived
in Appendix B. They are

1+ 1-071
Yo

+ ﬂ}o[l - n* — ‘yl(%le + 210)]“
0

2
- n:N% (8r + %Ar) - ,Y—VOIBQEOA"

eB . P
2 21 + Qoody + N0 LL
2mvyocC Yomry

-2
x [1 - 1(1—1“—%"—15 + 1,,)]
Yo a

o+ zgil
Yo

(8a)

. 2
p
+ QZin*zy - n,0% (Sz + ;;Az)

eBoo .
= - r — ooty

2m Yol (8b)
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where
n=r—r= Ar + br
21 =2 = Az + 8z
n* = n[l - %(ﬁls + 15)]
ns = wp2/(2v0°N:0%)
Qoo = eBoo/myoc

and where Pg; is equal to the canonical angular
momentum of the patticle at (r, z) minus the ca-

- nonical angular momentum of the refcrence par-

ticle at (ro, 0), to first order in small quantities.
It may be shown, using the definition of Py, Py

e
=r m'ng - ;Ae y that

Peor = myorp
)]
X [V01702 - ‘yi:linzolsn - lﬂzolsA’],
0

Yo

where Vﬂl = Vo - Voo.

As they stand Eqgs. (8a) and (8b) are not easily
solved since, before they can be solved for the
coordinates of a particle (ry, z,) the beam position
(Ar, Az) must somehow be known as a function
of time. However, a set of consistent equations
for beam and particle motion may be obtained by
performing an ensemble average of Eqs. (8a, b)

over initial particle coordinates and velocities.
Denoting such an average by brackets it may be
shown that, as long as the beam is assumed not
to kink (Ar, Az independent of 8), we will have

(r) = Ar, (89 = (81 = (6 = 0 (10a)
(1) = Az, (82) = (82) = (Bz) = 0. (10b)

Upon performing this averaging procedure on
Eqgs. (8a, b) we will obtain equations governing
the motion of the center of the beam. These may
subsequently be subtracted from the original,
unaveraged Eqs. (8a, b) to obtain equations gov-
erning the motion of a single particle within the
beam. Both resulting sets of equations may be
summarized by the following single set:

X+ wlx = Qooy + $Qe0y + F  (112)

¥+ 02y = —0gox — $Qox (11b)

where the various quantities appearing in Eqs.
(11a, b) are defined in Table 1.

Equations (11a, b) are our basic starting points
for the analysis to be presented below. In the
following sections we will derive and study the
WKB solutions to Egs. (11a, b). First we make
a few remarks on the equations thcmselves.

The term proportional to x on the lcft hand side
of Eq. (11a) and the term proportional to y on the
left hand side of Eq. (11b) represent radial and
vertical focussing forces respectively. In gencral
the coefficients of x and y in these terms are not

TABLE 1
Definition of Quantities Appearing in Equations of Motion, Egs. (11a,b)

Beam Equations

Particle Equations

x.y) vo'%(Ar, A2)
2 2 [ s’
[ Qo)1 - n* ~ ? n,

Ww/l 1y 1
Yo (uz le + 'B)] 250 + 4
5

Yo'*(dr, 52)

n}o[l - n* - n,

v {3 190 . 1 (¥o\?
-=1=1 +2!)]--—-+—(-—)
Vo(n’E s 2y 4 \vo

2 19 1 ("Yo)2
Qen* — s - == + - —
ol = ] 20 4\v
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MODIFIED-BETATRON BEAM DYNAMICS

equal which suggests that an initially circular
beam may not remain circular. The value of n
which makes these terms equal (the value re-
quired to maintain a circular beam cross scection)

is
| v (2
Neir = 5 [] - ; (;—2' le + lu)] (12)

which depends on v and therefore on time. In
what follows we wil! leave n arbitrary, though we
shall assume implicitly that its value is close to
nq.. This is necessary for self consistency since
we obtained the beam self fields Eqgs. (A-26) as-
suming a circular beam cross section.

In the case of constant fields Eqgs. (11a, b) are
elementary. For this case we have

() - (%)
+ 2 C; (W,—LIVJ":’Z) e (13)

where the eigenfrequencies (frequencies of be-
tatron oscillations) are given by

w2 + w,? + 0%
w, = *

2

* [(w:2 + 0,2 + Q%) — 4(:0,,2(9,2]"2]”2
2

(14)

and where the C;, j = 1, 2, 3, 4 are constants.

Stability conditions result in the usual way by
requiring w? > 0. We postpone examination of
these conditions, however, until the following
section. We note here only that for values of vy
above a value dependent on geometry (ry, a, ro,
n) but not on beam density, the self field contri-
butions to »,? and w,” fall off as y, ™!, rather than
vo~ 3. For whole bcam motion the valuc of vy at
Wthh the v/y, terms become comparable to the
ry2n,/a* term can be modest (y ~ 10) for typical
laboratory parameters (r, = 1 cm, a = 10 cm,
ro = 100 cm, n = 0.5). :

The particular solution in Eq. (13) represents
physically for particle motion a first order radial
shift of a particle which, while located initially
at the reference orbit (rg, 0) does not have the
correct energy to be maintained there by the local

vertical magnetic field. It therefore moves in or
out slightly depending on the sign of the encrgy
mismatch. If, however, the radial focussing
forces, represented by w,?, happen to vanish the
behavior becomes secular (no equilibrium radius
exists) and the particle- moves vertically, up or
down depending on the sign of the mismatch; this
secular motion is just the so called *‘curvature’’
or ‘‘centrifugal’’ drift.

The solution to the homogeneous part of Egs.
(I11a, b) also becomes secular when w,2 = 0. In
fact, when w,? = 0 and 0,® # 0,2 (n # n,), the
point w,> = 0 corresponds 1o a turning point
(transition from stable to unstable behavior) in
the WKB solution prescnted in the next section.
Since w,? for particle motion will pass through
zero dunng acceleration, it becomes important
to examine the behavior of the solutions to Eqgs.
(11a, b) for time dependent fields. In general, for
slowly time varying ficlds, a numerical solution
to Eqgs. (11a, b) over the entire acceleration cycle
is prohibitive since the numerical integration time
step must be small compared to Q5" which in
turn is extremely small compared to typical ac-
celeration times. An explicit solution for this case
is therefore essential.

IV. MOTION OF BEAM IN SLOWLY
VARYING EXTERNAL FIELDS
A. Stability Considerations

If the coefficients of the derivatives of x and y
in Egs. (11a, b) are slowly varying during a period
of a betatron oscillation, the equations may be
solved by the WKB method. (Sce Appendix C.)
To leading order the solution is

1 y _ mz)uz
()~ (0 = 23)
(15)

e [ K )]
xcxpr w,dt +f dt [K,.(t,t')] F('),

where the eigenfrequencics are thosc given in
(14) in which now all quantitics may depend on
time,

wa = [{(wy? + w, + Q30)? - 4(0,.20)_»-2]”4, (16)

and where the kernels K, (1, ') and K., (1, t') arc

.
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given in Appendix C. The A;,j = 1,2, 3, 4 are
constants in this approximation.

This solution, Eq. (16), is valid far from any
turning point, i.e. where any w, vanishes. Turning
points will occur if w,?w,? = 0 and if 0,2 # 2.
(See below.) Initially we shall confine attention
to a cold beam (no longitudinal momentum
spread) for which the particular solution in (15)
vanishes identically. Later we shall comment on
the effect of temperature.

The solution is unstable (exponentially grow-
ing) in time for such times that Im(w,) < 0 for any
Jj. Unstable behavior will occur therefore when-
ever either of the following conditions is violated:

020,2>0 (17a)
w2 + 0?2 + D% > 2wlw,?)?, (17b)

For n = ng, (0, = ,?) inequality (17a) is trivial
and (17b) gives the simplified stability condition

0320 > max(0, — dw,?). (18)

If n # ng, then both conditions (17a, b) must be
simultaneously satisfied for stability. Condition
(173) in particular cannot always be satisfied. At
injection n, is typically quite large and both w,?
and w,? for particle motion (and perhaps for beam
motion) are negative. Dniring acceleration, as g
increases n, decreases (n, ~ vo~*) and w,? and
w,? change sign (for different values of v, if n
# n..); an instability ‘‘gap™ therefore exists
whilc w,? and w,” have opposite signs.

It is important to point out that w,? and w,” for
beam center motion (Re: Table 1) may start out
and remain positive throughout the injection-ac-
celeration cycle while w,? and w,? for particle
motion change sign. We recall from Table I that
the small quantity (r,/a)® multiplies a, in the
expressions for w,” and w,? for beam center mo-
tion but not for single particle motion. Therefore
unless n, is extremely large initially, beam center
motion will remain stable.

The inequalities Eq. (17a-b) are illustrated
graphically in Fig. 3. The stable regions of the
(,/€260)?, (w,/Q60)* plane are those shaded re-

_gions 1 and II in the figure. After injection but

before acceleration both (w,/Q40)? and (w,/{eo)?
for particle motion are negative and in region 1.
In this region the toroidal magnetic field is es-
sential for stability (modified betatron regime).
Following acceleration both (w,/{s0)? and (w,/
40)? are positive, i.e., in region 11 in which the
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stable. Trajectors a and ¢ pass through unstable regions. Only
trajectories, such as b, avoid all unstable behavior.

toroidal field is no longer required for stability
(conventional betatron regime). Only by passing
precisely through the origin (e.g., trajectory b in
Fig. 3) can instability be avoided altogether.
While the size of the instability gap does not de-
pend on the magnitude of By, the value of Im(w;)
in the gap does and is inversely proportional to
Bgo. Therefore by choosing a sufficiently large
toroidal field it should be possible to pass through
the instability gap safely (within a few growth
times, or less).

We may be quantitative for a case in which
toroidal effects may be neglected: When Eq.
(17a) is violated and if Q30 > | w,2 |, | w,? ] then
for the unstable mode, from Eq. (14),

V=oole)?
Qoo

Im w; =

(19)

which has a peak value, assuming only vy, and
not By is changing in time, of

% = T -! H (20)

If

4] Y2
fd:lmw,-sf mo, <1, @
y ’Yo

n

where ¢, and ¢, arc the times at which the insta-
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MODIFIED-BETATRON BEAM DYNAMICS

bility gap is entcred and exited, respectively, then
one expects that the transit through the gap will
not significantly disrupt the beam; Eq. (21) trans-
lates into a constraint on vy
Yo
— >
Yo 3

i

By
Q20 Boo (n - 4. (22)

If the acceleration is fast enough to satisfy Eq.
(22) particle motion will be essentially unaffected
by passage through the gap. It should be possible
to choose a machine design (i.e., a sufficiently
large toroidal field and a field index close to §)
so that Eq. (22) is well satisfied.

The instability which occurs while w,?w,? < 0
has an interesting dynamical origin. Let us con-
sider the equations of motion, Egs. (11a, b), tak-
ing F = 0, and taking the external fields to be
constant in time:

% + we2x = Qooy (23a)
¥+ 0,y = —Qeof. (23b)

These equations are just those governing the
motion of a particle in an effective electric field

Ee" =~ ol (242)
ET = Tty (24b)

and a magnetic field Beo/yo. Converting to polar
coordinates p, ¢ we have

Ef" = gplwf cos’ ¢ + w,?sin’ $]  (25a)
Eo" = .'eﬁ plw,? — w,2) sing cosd. (25b)

The particle behavior may be understood as fol-
lows. Let us assume that n > §, from which it
follows that w,2 > w,? always, and let us consider
first the modified betatron regime (»,? < 0, v,?
< 0). E,*"in this regime is everywhere negative
thereby giving rise to a clockwise E % B drift,
assuming Beo is positive. E4", which is much
smaller in magnitude than E 7, gives a radial
drift of alternating sign as the particle moves from
quadrant to quadrant, thereby producing an el-

- liptical orbit. Stable motion is established by bal-

ancing the outward radial electrostatic + out-

33.7

ward centrifugal forces against the V x B
confining force.

In the conventional betatron regime w,?2 > 0,
w,® > 0 and the sign of E, 7 is reversed. Azi-
muthal particle drift is now counter-clockwise
and the major axis of the elliptical orbit is rotated
by 90°. Stable motion is achieved by balancing
the inward radial electrostatic force against the
centrifugal force; the toroidal field is no longer
needed.

In the instability gap E, 7 has zeroes at polar
angles given by

2\ -1
cos? ¢o = (1 - %) (26)

y

at which points the azimuthal drift velocity van-
ishes. The radial drift velocity, cE4"/B,, cannot
also vanish at the same point. Consequently the
particle drifts radially, with increasing velocity,
since E,°™ ~ p, at the angle ¢y, as long as w,’w,?
< 0. Increasing the toroidal B field, thereby re-
ducing the radial drift velocity, reduces the
growth rate of this instability, a fact reflected in
Eq. (19).

Typical orbits during transit of the instability
gap are illustrated for a simple case in Figs. 4 and
5 in which results of a numerical integration of

1.0

—
FINAL
ORIFT
DIRECTION

-1.0 1 I A I Il 1 I 2 A

-1.0 3¢ 1.0

FIGURE 4 Particle trajectory (8z vs. dr) in the modified
betatron during transit of the instability gap. vy varies linearly
in time from 7.0 to0 16.1 in 2.4 ps. By = 600 gauss, ro = 100
cm,a = 10cm,r, = Ycm, n = 0.53, v/y = 8.4 x 107 at
t=0.
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Egs. (11a, b) are plotted. In Fig. 4 condition (21)
is not well satisficd. The dramatic drift direction
reversal and instability are evident. In Fig. 5 con-
dition (21) is well satisfied (n is near ); particle
motion is virtually unaffected, except for the rev-
ersal of drift direction, by passage through the
gap. The two graphs, in Figs. 4 and 5 differ only
by the value of n used; all other external param-
eters and total intcgration time are identical.

So far no mention has been made of the effect
of temperature, the inhomogeneous term in Egs.
(11a, b), on particle orbit behavior in or near the
instability gap. Particles having an energy mis-
match—either too little or too much energy to
be maintained at the reference orbit by the local
vertical field—will seek out their new equilibrium
orbits about which they will execute betatron
oscillations. Secular behavior is expected, as dis-
cussed earlier, when w,? vanishes.

The effect of energy mismatch on a particle
orbit is illustrated in Fig. 6 where the particle of
Fig. 5 has been given an energy mismatch of

Poy — (Pe1)
—_—— =y — = 0.10.

mroc Y = ) 0

The effect is twofold. The orbit center shifts
slightly outward and the amplitude of betatron
oscillations following passage through the insta-
bility gap has increased by a factor of ~35 over

0.3
FINAL

CRIFT
B DIRECTION

- D o INITIAL
5N DRIFT
DIRECTION

.74

-0.3 . L L A 1 Il L . 1

-0.3 r—_ - - 0.3

FIGURE 5§ Particle trajectory (5z vs. 8r) in the modified
betatron during transit of the instability gap. All parameters
are as in Fig. 4 except n = 0.51.

10.0

FINAL
DRIFT
DIRECTION

REVERSAL

POINT INITIAL

DRIFT
DIRECTION

_‘0.0 L 1 1 1 1 L L 1 1
-10.0 . Y — 10.0

FIGURE 6 Particle trajectory (8z.vs. &r) in the modified
betatron during transit of the instability gap, including energy
mismatch. All parameters are as in Fig. 5 except an energy
mismatch of (Ps, — (Pe1))/mroc = 0.10 has been introduced.

the zero mismatch case. Such a large expansion
of the particle orbits cannot, in fact, be reliably
computed using the linearized Eqgs. (11a, b) used
here. One non-linear effect in particular, namecly
the reduction of beam density during the orbit
expansion, will clearly speed the passage of a
particle through the instability gap. (Recall that
n is proportional to density.) Due to this density
reduction the actual degree of orbit expansion to
be anticipated in a real device is likely to be sig-
nificantly less than that seen in Fig. 6. Still, these
calculations suggest that a fairly cold beam will
be required for successful acceleration through
the instability gap. Poorly *‘matched” particles
are likely to be lost as w,? goes through zero. It
should be pointed out as well that a strong to-
roidal field greatly reduces the effects of energy
mismatch. The computer runs necessarily em-
ploy a very modest toroidal field (660 gauss in
the case of Figs. 4-6) due to time step consid-
erations. A stronger ficld, by further restricting
radial motion, is expected to improve the con-
finement properties of a warm beam.

B. Adiabatic Behavior

Let us next briefly consider, using the solutions
to the equations of motion, Eq. (15), the effects
on the particle orbits of the removal of the to-

33.8
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MODIFIED-BETATRON BEAM DYNAMICS

roidal magnetic ficld. The toroidal field may need
to be removed in order to facilitate beam extrac-
tion though this may not be essential. Let us as-
sume that Eq. (15) is valid throughout the accel-
eration cycle, i.e., that 0,2 and w,? pass through
zero simultaneously and that the solution to the
homogeneous equation (the sum in Eq. (15)) dom-
inates the solution. This is certainly true for
matched particles (Ps = (Ps) = 0) whenn = }
and when toroidal effects may be neglected (v/y
< 1). One may show, using Eq. (15) for such a
case, that for beam center motion in either the
fast or slow oscillation mode

[An? + (89%),
[(Ar)* + (A2)*);

1 "2 1 . 172
[(5 —- —ah—zn,)Bfo + '4‘850]

1 rbz 1

~ = 5, )B% + ;B3
[(2 a? ”:) z0 4300]!

while for particle motion about the beam center'?

(3 + (32)’)s
(®r)* + (82)’)i

o))

28

— [[(% —~ n,)B3 + }Béo].-]"z
I3 — n)B + ¥ Blols)

where the subscripts i and f correspond to any
initial and final states. The latter expression, Eq.
(28), may be interpreted as the fractional change
in beam cross sectional area. Note that for large
Bo the area of the orbits ~B, ™', as expected.

Expressions for these ratios in the case that
toroidal effects are not negligible and n # } may
be obtained from Eq. (15). The expressions are
complicated, however, and will not be cited here.

As a numerical example we consider a 1 kA
beam of 1 cm initial radius in an initial state cor-
responding to y; = 7, B,o; = 120 g, Beo; = 1.5
kg and a final state with y; = 100, Bos = 1.7
kg, and Byo s = 0. In such a case Eq. (27) gives
for the orbital area ratio a value of 0.63 while Eq.
(28) gives for the ratio of beam cross sectional
areas a valuc of 0.60. '

We conclude that it should be possible both to
accelerate the beam and to remove the toroidal

field to facilitate beam ejection without causing
either the beam orbit or individual particle orbits
to expand without limit.

V. CONCLUSIONS

The beam in a modificd betatron can be stably
confined both during the acceleration phase and
during the subsequent gradual removal of the to-
roidal magnetic field prior to beam ejection. As
the beam is accelerated, however, unless very
special conditions are satisfied, a region of insta-
bility will be passed through; however if the time
of transit through this instability gap is small com-
pared to the time specified in Eq. (20) the net
effect should be small.

As the toroidal field is removed to facilitate
beam extraction following acceleration no further
instability gaps occur but the magnitude of the
beam betatron oscillations will change adiabati-
cally. By arranging that the ratios, Eqgs. (27, 28),
be near one, one expects the beam to be well
behaved during the removal of the toroidal field.

It should be remarked however that changing
the toroidal field changes the *‘tune’’ of the be-
tatron which, in general, will necessitate the pas-
sage through orbital resonances as the toroidal
ficld is removed. These resonances, due to the
periodic encounter by a particle of a field error
or “'‘bump’’ are currently under investigation. It
is anticipated that a condition governing the min-
imum speed with which By must be removed,
expressed as a function of the magnitude of the
field error, will be obtained.®
Note added in proof: Duc to a quirk in the pub-
lication process the work of reference 8, while
completed and submitted for publication after the
present work, actually appears in print earlier in
this volume (Part. Acc. 12, 329 (1982)).
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APPENDIX A

Fields in the Modified Betatron

In this appendix we calculate the fields seen
by a particle in a modificd betatron. The particle
is assumed to be close to the axis of the torus,
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that is, the coordinates of the particle are taken
to be (refer to Figs. 1 and 2 in the text)

(r,2) = (ro + Ar + br, Az + 32)

and all fields will be calculated to first order in
Ar, br, Az, and 8z. Fields will be given in the (r,
8, z) coordinate system of Fig. 1 and all will be
assumed to be independent of 6. Superscripts a
and s will be used below to denote applied and
self fields, respectively.

Part I (Applied Fields)

Magnetic Field

The usual weak focussing betatron field has r and
z components. The z component is taken to be-
have near r, as

B,® = B.o(ro/r)"

( Ar + Br)
= B,o 1—-n ,
To

where B,, depends only on time and n, taken as
a constant to this order, is the so-called vacuum
field index. The radial field is obtained by re-
quiring (V x B)e = 0 and B,(z = 0) = 0 (making
the z = 0 plane a plane of symmetry). The result
is

(A-1)

(A-2)

Az + Bz)
To

B’a = - nBzO(

The applied toroidal field generally falls off as
r~" across the minor cross section of the torus

+ 3
BoazBoo(l - Ar r),

ro

where Byo depends only on time. However, in
the equations of motion B, multiplies only
fand 7 terms which are already first order.
Therefore the gradient of B, does not enter the
linearized equations of motion and we take only
the zero order value,

Bo® = By,o. (A-3)

33.10
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Electric Field

All applied electric fields are inductive. The to-
roidal electric ficld is governed by the changing
central flux and is taken to be a specified function
of time

Ey® = Ego(1)- (A-4)

E, is negative for electron acceleration with B,
positive.

Changing the toroidal magnetic field, Byo, will
induce a poloidal electric field, the r and z com-
ponents of which are easily found

Ef = - -I—Boo(Az + 82) (A-5)
2c
ES° = LBeo(Ar + &), (A-6)
2c

where a dot indicates a time derivative.

Part 11 (Self Fields)

Since we neglect beam diamagnetism and the
possibility of a change in self flux due to time
varying beam current we take Bg® = Eg° = 0. It
remains to calculate the r and z components of
the beam self electric and magnetic fields.
Consider a beam circulating inside a perfectly
conducting toroidal chamber of circular cross
section as shown in Fig. A-1. (The beam dis-

[}
!
z
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. N A
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FIGURE A-1 Geometry for scif ficld calculation
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placement is exaggerated for clarity; we will as-
sume A < a). The chamber major and minor radii
are ro and a respectively. The beam major and
minor radii are R, and r, respectively.. We must
calculate the ficlds inside the beam (p < r,), as-
suming the chamber is a perfect conductor. To
proceed we define a scalar potential ®(p, ¢) and
a magnehc flux or stream function ¥(p, ¢) = rA,
where A, is the usual vector potential. The equa-
tions for ® and ¥ are

18 (,99) 100
pop\P3p) T prag?

[cos ¢Q - 1sm ¢a¢]

ap od
= 4weno(p, d) — Ro+ pcosd>
(A-7)
15,0 10y
pap\Pap) " pa¢?
= - %(Rb + pCOS(b)-’o(P, d))
0 | v
[coscb ™ si n¢ad>]
Rb + pCOS¢
(A-8)

where ny, the beam number density and J,, the
beam current density, are assumed to have been
specified. Here we shall take both n, and Jg con-
stant, independent of p and ¢.

The boundary conditions on ® and ¥ are the
same; they both must vanish at the surface of the
chamber, specified by

p=a — Acos(y — ¢), (A-9)

correct to first order in Ala.

Scalar Potential and Electric Field

The general solution for @, including the first
toroidal correction, is

gp®

4R brbz

(
bo + g1 — prs?) + cos ¢

+A£sin¢+B£cos¢ p<ry
rs Iy

(A-10)

¢ =

‘ Do — 2gIn plry + ;]Tp In p/ry cos ¢
b

+ (A'ﬁ + C'Q’) sin &
rs Y]

(B'£+D'fi’) cosd p>rs
re P

+

\
where ¢ = —enomr,? and &y, A, B, A’, B', C',
and D’ are constants.

Applying now the correct boundary conditions
both at the beam surface and the wall determines
all of the constants:

@ = 2glnalr (A-11a)

A=A'= —2q%5afsin¢ (A-11b)

B=B'=-qInalr, - &’;2 (A-11c)
- 2q——"cos¢

C' = (A-11d)

D' = g% (A-1le)

Using this result in Eq. (A-10) we may calculate
the r and z components of E* inside the beam,
to first order:

P
Es= - —a--cosd) + 65$Sln¢
_ 2 re? q, a
== [ar + Ar] tr s A
